New Insights in Trigeminal Anatomy: A Double Orofacial Tract for Nociceptive Input
نویسندگان
چکیده
Orofacial pain in patients relies on the anatomical pathways that conduct nociceptive information, originating from the periphery towards the trigeminal sensory nucleus complex (TSNC) and finally, to the thalami and the somatosensorical cortical regions. The anatomy and function of the so-called trigeminothalamic tracts have been investigated before. In these animal-based studies from the previous century, the intracerebral pathways were mapped using different retro- and anterograde tracing methods. We review the literature on the trigeminothalamic tracts focusing on these animal tracer studies. Subsequently, we related the observations of these studies to clinical findings using fMRI trials. The intracerebral trigeminal pathways can be subdivided into three pathways: a ventral (contralateral) and dorsal (mainly ipsilateral) trigeminothalamic tract and the intranuclear pathway. Based on the reviewed evidence we hypothesize the co-existence of an ipsilateral nociceptive conduction tract to the cerebral cortex and we translate evidence from animal-based research to the human anatomy. Our hypothesis differs from the classical idea that orofacial pain arises only from nociceptive information via the contralateral, ventral trigeminothalamic pathway. Better understanding of the histology, anatomy and connectivity of the trigeminal fibers could contribute to the discovery of a more effective pain treatment in patients suffering from various orofacial pain syndromes.
منابع مشابه
Nociceptive Afferents to the Premotor Neurons That Send Axons Simultaneously to the Facial and Hypoglossal Motoneurons by Means of Axon Collaterals
It is well known that the brainstem premotor neurons of the facial nucleus and hypoglossal nucleus coordinate orofacial nociceptive reflex (ONR) responses. However, whether the brainstem PNs receive the nociceptive projection directly from the caudal spinal trigeminal nucleus is still kept unclear. Our present study focuses on the distribution of premotor neurons in the ONR pathways of rats and...
متن کاملLocal administration of resveratrol inhibits excitability of nociceptive wide-dynamic range neurons in rat trigeminal spinal nucleus caudalis.
Although we recently reported that intravenous administration of resveratrol suppresses trigeminal nociception, the precise peripheral effect of resveratrol on nociceptive and non-nociceptive mechanical stimulation-induced trigeminal neuron activity in vivo remains to be determined. The aim of the present study was to investigate whether local subcutaneous administration of resveratrol attenuat...
متن کاملSystemic administration of resveratrol suppress the nociceptive neuronal activity of spinal trigeminal nucleus caudalis in rats
Although a modulatory role has been reported for the red wine polyphenol resveratrol on several types of ion channels and excitatory synaptic transmission in the nervous system, the acute effects of resveratrol in vivo, particularly on nociceptive transmission of the trigeminal system, remain to be determined. The aim of the present study was to investigate whether acute intravenous resveratrol...
متن کاملKCNQ channels in nociceptive cold-sensing trigeminal ganglion neurons as therapeutic targets for treating orofacial cold hyperalgesia
BACKGROUND Hyperexcitability of nociceptive afferent fibers is an underlying mechanism of neuropathic pain and ion channels involved in neuronal excitability are potentially therapeutic targets. KCNQ channels, a subfamily of voltage-gated K(+) channels mediating M-currents, play a key role in neuronal excitability. It is unknown whether KCNQ channels are involved in the excitability of nocicept...
متن کاملAcute intravenous administration of dietary constituent theanine suppresses noxious neuronal transmission of trigeminal spinal nucleus caudalis in rats
Theanine is a non-dietary amino acid linked to the modulation of synaptic transmission in the central nervous system, although the acute effects of theanine in vivo, particularly on nociceptive transmission in the trigeminal system, remain to be determined. The present study investigated whether acute intravenous theanine administration to rats attenuates the excitability of wide dynamic range ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Frontiers in neuroanatomy
دوره 10 شماره
صفحات -
تاریخ انتشار 2016